The catabolic function of the alpha-aminoadipic acid pathway in plants is associated with unidirectional activity of lysine-oxoglutarate reductase, but not saccharopine dehydrogenase.
نویسندگان
چکیده
Whereas plants and animals use the alpha-aminoadipic acid pathway to catabolize lysine, yeast and fungi use the very same pathway to synthesize lysine. These two groups of organisms also possess structurally distinct forms of two enzymes in this pathway, namely lysine-oxoglutarate reductase (lysine-ketoglutarate reductase; LKR) and saccharopine dehydrogenase (SDH): in plants and animals these enzymes are linked on to a single bifunctional polypeptide, while in yeast and fungi they exist as separate entities. In addition, yeast LKR and SDH possess bi-directional activities, and their anabolic function is regulated by complex transcriptional and post-transcriptional controls, which apparently ascertain differential accumulation of intermediate metabolites; in plants, the regulation of the catabolic function of these two enzymes is not known. To elucidate the regulation of the catabolic function of plant bifunctional LKR/SDH enzymes, we have used yeast as an expression system to test whether a plant LKR/SDH also possesses bi-directional LKR and SDH activities, similar to the yeast enzymes. The Arabidopsis enzyme complemented a yeast SDH, but not LKR, null mutant. Identical results were obtained when deletion mutants encoding only the LKR or SDH domains of this bifunctional polypeptide were expressed individually in the yeast cells. Moreover, activity assays showed that the Arabidopsis LKR possessed catabolic, but not anabolic, activity, and its uni-directional activity stems from its structure rather than its linkage to SDH. Our results suggest that the uni-directional activity of LKR plays an important role in regulating the catabolic function of the alpha-amino adipic acid pathway in plants.
منابع مشابه
Catabolism of lysine in Penicillium chrysogenum leads to formation of 2-aminoadipic acid, a precursor of penicillin biosynthesis.
Penicillium chrysogenum L2, a lysine auxotroph blocked in the early steps of the lysine pathway before 2-aminoadipic acid, was able to synthesize penicillin when supplemented with lysine. The amount of penicillin produced increased as the level of lysine in the media was increased. The same results were observed in resting-cell systems. Catabolism of [U-14C]lysine by resting cells and batch cul...
متن کاملLysine Catabolism: Flow, Metabolic Role and Regulation
Lysine is an essential amino acid, synthesized in plants in the aspartic acid pathway. The lysine catabolism is performed by the action of two consecutive enzymes, lysine 2-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH). The steady state of lysine is controlled by both, synthesis and catabolism rates, with the final soluble lysine concentration in cereal seeds a direct result...
متن کاملConversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase.
Pipecolic acid is a component of several secondary metabolites in plants and fungi. This compound is useful as a precursor of nonribosomal peptides with novel pharmacological activities. In Penicillium chrysogenum pipecolic acid is converted into lysine and complements the lysine requirement of three different lysine auxotrophs with mutations in the lys1, lys2, or lys3 genes allowing a slow gro...
متن کاملSaccharopine, an Intermediate of the Aminoadipic Acid Pathway of Lysine Biosynthesis*
Two pathways of lysine biosynthesis are known to exist in nature. The diaminopimelic acid pathway, studied in detail in Escherichia coli (l), is the route of lysine biosynthesis in bacteria, certain lower fungi, algae, and higher plants (2). In other classes of lower fungi, in higher fungi, and in Euglena, lysine is synthesized in a different manner, involving the intermediate cu-aminoadipic ac...
متن کاملPurification and Characterization of the Bifunctional Enzyme Lysine-Ketoglutarate Reductase-Saccharopine Dehydrogenase from Maize.
The first enzyme of the lysine degradation pathway in maize (Zea mays L.), lysine-ketoglutarate reductase, condenses lysine and [alpha]-ketoglutarate into saccharopine using NADPH as a cofactor, whereas the second, saccharopine dehydrogenase, converts saccharopine to [alpha]-aminoadipic-[delta]-semialdehyde and glutamic acid using NAD+ or NADP+ as a cofactor. The reductase and dehydrogenase act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 351 Pt 1 شماره
صفحات -
تاریخ انتشار 2000